When developing the site plan for the former school parcel, careful consideration was used in laying out the buildings, parking, roadway and other amenities. The existing site slopes from the front to the back with a large drop-off to a wetland area along the rear of the site. The site plan was designed to locate smaller 2-story buildings at the front of the site along the existing roadway and to locate the larger 4-story buildings at the rear of the site in order to take advantage of this steep slope and natural site topography. The rear buildings will consist of 4-story structures including 3 floors of residential above a level of parking. The site plan was also designed to utilize the historic portion of the existing Cohanzie School building as part of the residential development. The Cohanzie School building will act as a community building / amenity for the residents of the development and may also provide for a meeting room / event space for the local community and surrounding neighborhood. Other amenities incorporated in the project design include walkways and paths around and through the site, an in-ground swimming pool, and a play-scape for residents' use.

The proposed site design also provides for ample onsite parking to support the development program. The site plan included below provides 270 parking spaces for 154 units proposed or 1.75 parking spaces per unit. These 270 parking spaces satisfy the town requirements of 1.5 spaces per efficiency / 1-bedroom unit and 2 spaces per 2-bedroom unit and also satisfy the market requirements to make this type of residential product saleable. Since the entire parking requirement for the project is satisfied onsite, sharing parking on the town owned park located across Dayton road will not be required and no developer improvements to this lot are contemplated in the proposed plan.

The stormwater / drainage design for this site will incorporate measures to assure that the rate of runoff will not increase as a result of the development and will also provide renovation prior to the discharge of stormwater to outlet points. The proposed plan also contemplates the installation of catch basins with hooded outlets throughout the street systems, which would be connected with a pipe network, discharging to a vegetated detention / retention basin prior to discharging into the wetland area. The clean water from the roofs of the residential structures can be discharged into underground recharge systems within various parts of the development. This can be done as long as the soils can provide good permeability back into the ground and this will be evaluated during detailed site design. Another potential form of stormwater renovation, which will be evaluated as detailed site design takes place, is to maintain the greatest amount of natural vegetated buffer possible and to utilize vegetated swales for stormwater discharges.